变限积分求导法来自!例题
的有关信息介绍如下:问题补充说明:求d/dx∫下限为0,上限为x(x-t)f'(t)dt解:原式=d/dx(x∫下限为0,上限为x)f'(t)dt-∫下限为0,上限为x,tf'(t)dt)=∫下限为0,上限为xf'(t)dt+xf'(x)-xf'(x)这步是算的,怎么... 求 d/dx∫下限为0,上限为x (x-t)f'(t)dt 解:原式=d/dx(x∫下限为0,上限为x)f'(t)dt-∫下限为0,上限为x ,tf'(t)dt) =∫下限为0,上限为x f'(t)dt+xf'(x)-xf'(x) 这步是算的,怎么加个又减个,那个怎么来的,原理是什么? =∫下限为0,上限为x,f'(t)dt =f(x)-f(0) f'这个表示f撇,求导上有,学过的人应该知道! 详细的说下每步怎么算不了,依据什么?讲清楚! 展开
d/dx
∫(0→x)
(x-t)f'(t)
dt
=
d/dx
∫(0→x)
[xf'(t)
-
tf'(t)]
=
d/dx
{∫(0→x)
xf'(t)
dt
-
∫(0→x)
t鲜损村半亚若怀先这她答f'(t)
dt}
=
d/dx
x∫(0→x)
f'(t)
dt
-
d/dx
∫诉(0→x)
tf'(t)
d英t
第一积分的值很好算,有:
∫(0→x)
f'(t)
dt
=
f(x)
-
f(0)
而假设第二个积分中,被积函数的原函数是其排务计写等g(t),即:
g'(t)
=
t
f'(t)
则:
∫(0→x)
tf'(t)
dt
=
g(x)
热电大等胜鱼教农朝快维-
g(0)
所以原式为:
d/dx
[xf(x)
-
xf(0)]
-
d/dx
[g(x)-g(0)]
对x微分,不含x的部分作常数处理,得:
xf'(x)
+
f(x)
-
f(0)
-
g'(从x)
又由函数g的定义,得到:
=
xf'(x)
+
f(x)
-
f(0)
-
x
f'(x)
=
f(x)
-
f(0)
其实你给的过程也就是大联持煤致按照这种方法,只不过它很早就位福建请做了微分,而且比较抽象,所以看起来晕罢了。我则是先整理了式子,然后才做的微分,你可以看到,我的做法跟答案一济送群不径代那培样,也是约掉了xf'(x)的娘候命,所以本质上是一样的。而也许粮许欢应管对起企赵剧医我这样做你会比较好理解。
另外我美武引入到了函数g(t),但是不必怀疑它是否连续可导,因为有函数tf'(t)存在。至于规范过程的话,还是按照你的过程架洋,写个很抽象的东西就好了,不必引入新东西,然后再去讨论他连续可导。
还不明白的话欢迎补充提问。^_^